Answer:3.15 %
Explanation:
Given
3.15 % compounded monthly
2.25 % quarterly
2.05 % daily
(a)A=P
![\left [ 1+(r)/(n)\right ]^(nt)](https://img.qammunity.org/2020/formulas/mathematics/college/qyrosdlpnhmhi5saz33ohlr3jb290ri76n.png)
A=P
![\left [ 1+(0.0315)/(12)\right ]^(12t)](https://img.qammunity.org/2020/formulas/mathematics/college/wvpujnowl9h0jy0it0xmpsmkjtndk7cqat.png)
Suppose t= 1 year
A=1.031958 P
(b)A=
![\left [ 1+(r)/(n)\right ]^(nt)](https://img.qammunity.org/2020/formulas/mathematics/college/qyrosdlpnhmhi5saz33ohlr3jb290ri76n.png)
A=
![\left [ 1+(0.025)/(4)\right ]^(4t)](https://img.qammunity.org/2020/formulas/mathematics/college/herg28naoyispe2jo1l1n0741zwd93d6so.png)
A=1.022690 P
(iii)For 2.05 daily
A=
![\left [ 1+(0.0205)/(365)\right ]^(365t)](https://img.qammunity.org/2020/formulas/mathematics/college/s0semm5jd3p6b1ab53k9ho9ud205obu85p.png)
For t=1 year
A=1.020709 P
thus Compound interest compounded monthly at 2.05% interest offers best deal as it sums up to least.