113k views
1 vote
Use the distance formula, show that the points (4,0), (2,1), and (-1,-5) form the vertices of a right triangle

User Ahans
by
8.1k points

1 Answer

5 votes

Explanation:

The distance formula between two points:


d=√((x_2-x_1)^2+(y_2-y_1)^2)

Substitute the coordinates of the points.


A(4,\ 0),\ B(2,\ 1),\ C(-1,\ -5)\\\\AB=√((2-4)^2+(1-0)^2)=√((-2)^2+1^2)=√(4+1)=\sqrt5\\\\AC=√((-1-4)^2+(-5-0)^2)=√((-5)^2+(-5)^2)=√(25+25)=√(50)\\\\BC=√((-1-2)^2+(-5-1)^2)=√((-3)^2+(-6)^2)=√(9+36)=√(45)

If a ≤ b < c are the sides of the right triangle, then

a² + b² = c²


\sqrt5<√(45)<√(50)\\\\(\sqrt5)^2+(√(45))^2=5+45=50\\\\(√(50))^2=50\\\\\bold{CORRECT}

used
(√(a))^2=a for a ≥ 0.


AB^2+BC^2=AC^2 therefore ΔABC is a right triangle.

User Anders Gram Mygind
by
8.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories