Answer:
Maximum height, h(t) = 95 meters
Step-by-step explanation:
A ball travels on a parabolic path in which the height (in feet) is given by :
.............(1)
Where
t is the time after launch
We need to find the maximum height of the ball in feet. For maximum height,


t = 2
Put the value of t in equation (1) as :

h(t) = 95 meters
So, the maximum height of the ball is 95 meters. Hence, this is the required solution.