Answer:

Step-by-step explanation:
given data:
height of tank = 60cm
diameter of tank =40cm
accelration = 4 m/s2
suppose x- axis - direction of motion
z -axis - vertical direction
= water surface angle with horizontal surface
accelration in x direction
accelration in z direction
slope in xz plane is



the maximum height of water surface at mid of inclination is



the maximu height of wwater to avoid spilling is

= 60 - 8.2

the height requird if no spill water is
