167k views
2 votes
Find two linearly independent power series solutions about the point x0 = 0 of

(x^2 ? 4)y"+ 3xy' + y = 0. State the minimum radius of convergence, and explain
why it is the minimum of radius of convergence.

User Abriggs
by
8.6k points

1 Answer

4 votes

Assume a solution of the form


y=\displaystyle\sum_(n\ge0)a_nx^n

with derivatives


y'=\displaystyle\sum_(n\ge0)(n+1)a_(n+1)x^n


y''=\displaystyle\sum_(n\ge0)(n+2)(n+1)a_(n+2)x^n

Substituting into the ODE, which appears to be


(x^2-4)y''+3xy'+y=0,

gives


\displaystyle\sum_(n\ge0)\bigg((n+2)(n+1)a_(n+2)x^(n+2)-4(n+2)(n+1)a_(n+2)x^n+3(n+1)a_(n+1)x^(n+1)+a_nx^n\bigg)=0


\displaystyle\sum_(n\ge2)n(n-1)a_nx^n-4\sum_(n\ge0)(n+2)(n+1)a_(n+2)x^n+3\sum_(n\ge1)na_nx^n+\sum_(n\g0)a_nx^n=0


(a_0-8a_2)+(4a_1-24a_3)x+\displaystyle\sum_(n\ge2)\bigg[(n+1)^2a_n-4(n+2)(n+1)a_(n+2)\bigg]x^n=0

which gives the recurrence for the coefficients
a_n,


\begin{cases}a_0=a_0\\a_1=a_1\\4(n+2)a_(n+2)=(n+1)a_n&\text{for }n\ge0\end{cases}

There's dependency between coefficients that are 2 indices apart, so we consider 2 cases.

  • If
    n=2k, where
    k\ge0 is an integer, then


k=0\implies n=0\implies a_0=a_0


k=1\implies n=2\implies a_2=\frac1{4\cdot2}a_0=\frac2{4\cdot2^2}a_0=(2!)/(2^4)a_0


k=2\implies n=4\implies a_4=\frac3{4\cdot4}a_2=\frac3{4^2\cdot4\cdot2}a_0=(4!)/(2^8(2!)^2)a_0


k=3\implies n=6\implies a_6=\frac5{4\cdot6}a_4=(5\cdot3)/(4^3\cdot6\cdot4\cdot2)a_0=(6!)/(2^(12)(3!)^2)a_0

and so on, with the general pattern


a_(2k)=((2k)!)/(2^(4k)(k!)^2)a_0

  • If
    n=2k+1, then


k=0\implies n=1\implies a_1=a_1


k=1\implies n=3\implies a_3=\frac2{4\cdot3}a_1=(2^2)/(2^2\cdot3\cdot2)a_1=\frac1{(3!)^2}a_1


k=2\implies n=5\implies a_5=\frac4{4\cdot5}a_3=(4\cdot2)/(4^2\cdot5\cdot3)a_1=((2!)^2)/(5!)a_1


k=3\implies n=7\implies a_7=\frac6{4\cdot7}a_5=(6\cdot4\cdot2)/(4^3\cdot7\cdot5\cdot3)a_1=((3!)^2)/(7!)a_1

and so on, with


a_(2k+1)=((k!)^2)/((2k+1)!)a_1

Then the two independent solutions to the ODE are


\boxed{y_1(x)=\displaystyle a_0\sum_(k\ge0)((2k)!)/(2^(4k)(k!)^2)x^(2k)}

and


\boxed{y_2(x)=\displaystyle a_1\sum_(k\ge0)((k!)^2)/((2k+1)!)x^(2k+1)}

By the ratio test, both series converge for
|x|<2, which also can be deduced from the fact that
x=\pm2 are singular points for this ODE.

User SequenceGeek
by
8.2k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories