Answer:
Z SCORE FOR 1870 = 1.26
Z SCORE FOR 1200 = -0.89
Z SCORE FOR 2180 = 2.25
Z SCORE FOR 1380 = -0.315
Explanation:
given data:
test score
= 1478
standard deviation
= 311
z score can be calculated by using below relation
![Z = (X-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/h9zyjv47ia7g4fl1elag7v059xspv1pmto.png)
1) Z SCORE FOR 1870
![= (1870-1478)/(311)](https://img.qammunity.org/2020/formulas/mathematics/college/3iifpdn48qffttaqegrpbc9dz21b4dzki9.png)
= 1.26
2) Z SCORE FOR 1200
![= (1200-1478)/(311)](https://img.qammunity.org/2020/formulas/mathematics/college/259162px5rjtj3plnh5cyep4t7cy8wu9zh.png)
= -0.89
3) Z SCORE FOR 2180
![= (2180-1478)/(311)](https://img.qammunity.org/2020/formulas/mathematics/college/9ghhasxt42szz5uo9z54b00siwkf9umgng.png)
= 2.25
4) Z SCORE FOR 1380
![= (1380-1478)/(311)](https://img.qammunity.org/2020/formulas/mathematics/college/zmw7ty8nsh90fxqt8673vw0ynfzpav4tt7.png)
= -0.315
There are no unusual z value.