Answer:
Acceleration, a = 1.1 m/s²
Step-by-step explanation:
Frequency of source,
![f_s=10^4\ Hz](https://img.qammunity.org/2020/formulas/physics/college/l22yuv5e7ntxnn02qd5o9qm1nlovbboz5t.png)
Speed of sound, v = 343 m/s
Frequency of observer,
![f_o=9952\ Hz](https://img.qammunity.org/2020/formulas/physics/college/hdp3m02fkib1rrgw24z4oc6qbuu68xplqk.png)
We know that acceleration a of the platform is :
..............(1)
The frequency detected by the microphone is :
At 1.5 seconds,
![f_o=f_s(1-(v_2)/(v))](https://img.qammunity.org/2020/formulas/physics/college/419ud26fcaw6ngf9arnlg0d6l1q9bwhxad.png)
![v_2=v(1-(f_o)/(f_s))](https://img.qammunity.org/2020/formulas/physics/college/q5fs22zm5076l7j9b0a7cv54o0aw65a20u.png)
![v_2=343* (1-(9952)/(10000))](https://img.qammunity.org/2020/formulas/physics/college/ymm7uki4kqr9eflmyelbwnmnbhi8x8q93a.png)
![v_2=1.64\ m/s](https://img.qammunity.org/2020/formulas/physics/college/hdn3xj3p5zw1o361c3pwh7376l1j5anp2q.png)
At 3.5 seconds,
![f_o=f_s(1-(v_2)/(v))](https://img.qammunity.org/2020/formulas/physics/college/419ud26fcaw6ngf9arnlg0d6l1q9bwhxad.png)
![v_2=v(1-(f_o)/(f_s))](https://img.qammunity.org/2020/formulas/physics/college/q5fs22zm5076l7j9b0a7cv54o0aw65a20u.png)
![v_2=343* (1-(9888)/(10000))](https://img.qammunity.org/2020/formulas/physics/college/aa693p34r4qpo11yvx2qm865ndkf7bprzc.png)
![v_2=3.84\ m/s](https://img.qammunity.org/2020/formulas/physics/college/zkadgw3v2surardbzkjxf0oh8mv1mgrse3.png)
So, equation (1) becomes :
![a=(3.84-1.64)/(3.5-1.5)](https://img.qammunity.org/2020/formulas/physics/college/mmy62hnskjmgo6bwcqil6vr522giwwremg.png)
![a=1.1\ m/s^2](https://img.qammunity.org/2020/formulas/physics/college/grcwye1wndduu9bi3qvcs6fmbpunuduaui.png)
So, the acceleration of the platform is 1.1 m/s². Hence, this is the required solution.