Answer:
![(-0.48,\ -0.04)](https://img.qammunity.org/2020/formulas/mathematics/college/c7lf5kfbjwiktz6b2dlxg4qq9ostyxo0s3.png)
Explanation:
The confidence interval for the difference of two population proportion is given by :-
![(p_1-p_2)\pm z_(\alpha/2)\sqrt{(p_1(1-p_1))/(n_1)+(p_2(1-p_2))/(n_2)}](https://img.qammunity.org/2020/formulas/mathematics/college/n6eeluklagysb4uwi0oj5dnn4e57mqtbmi.png)
Given : The first sample consists of 20 people with 9 having a common attribute.
Here,
,
![p_1=(9)/(20)=0.45](https://img.qammunity.org/2020/formulas/mathematics/college/guw0mpvtvpqtvgwemck1g607gccg2weict.png)
,
![p_1=(1492 )/(2100)\approx0.71](https://img.qammunity.org/2020/formulas/mathematics/college/pgq1gu9df3y9anqlqkgt6sbpwtz63wdgzu.png)
Significance level :
![\alpha=1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/college/4d93854tdh8vyqqac8zw25nhdokllaz78c.png)
Critical value :
![z_(\alpha/2)=1.96](https://img.qammunity.org/2020/formulas/mathematics/high-school/fn1e1isyr7r4ubq2yxfnpgs4mo3eo8m7ik.png)
A 95% confidence interval for the difference of two population proportion will be :-
![(0.45-0.71)\pm z_(\alpha/2)\sqrt{(0.45(1-0.45))/(20)+(0.71(1-0.71))/(2100)}\\\\\approx -0.26\pm0.22\\\\=(-0.26-0.22,-0.26+0.22)\\\\=(-0.48,\ -0.04)](https://img.qammunity.org/2020/formulas/mathematics/college/bawwl8fonlcayuppk1pnnrn61lftf528p1.png)