Answer: 0.0129
Explanation:
Given : Sample size : n=32
The average amount of time spent texting over a one-month period is :
![\mu=173\text{ minutes}](https://img.qammunity.org/2020/formulas/mathematics/college/hb97694k9rwe5rjciisbwufdttgqs5r3zn.png)
Standard deviation :
![\sigma=66\text{ minutes}](https://img.qammunity.org/2020/formulas/mathematics/college/qhrx1ip8k6nj1mw88yx3vgj2835cruyq17.png)
We assume that the time spent texting over a one-month period is normally distributed.
z-score :
![z=(x-\mu)/((\sigma)/(√(n)))](https://img.qammunity.org/2020/formulas/mathematics/college/kv4zbzwta1cei225xptycu57ns4dmxgoss.png)
For x= 199
![z=(199-173)/((66)/(√(32)))\approx2.23](https://img.qammunity.org/2020/formulas/mathematics/college/quumlf4wdq2323vthqqok1ylm63s2oyiu0.png)
Now by using standard normal table, the probability that the average amount of time spent using text messages is more than 199 minutes will be :-
![P(x>199)=P(z>2.23)=1-P(z\leq2.23)\\\\=1- 0.9871262=0.0128738\approx0.0129](https://img.qammunity.org/2020/formulas/mathematics/college/ejhd1416bqewbtnt7r9mbnikefrx8fcrw0.png)
Hence, the required probability = 0.0129