Answer: The correct option is
(D) (2, -6, 1).
Step-by-step explanation: We are given to solve the following system of linear equations :
![2x+y-z=-3~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(i)\\\\5x-2y+2z=24~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(ii)\\\\3x-z=5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(iii)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7nbhp114974z9122gxndhv947blw1c5fgq.png)
From equation (iii), we have
![3x-z=5\\\\\Rightarrow z=3x-5~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(iv)](https://img.qammunity.org/2020/formulas/mathematics/high-school/pxiclwbc20f8vcz754a6yy2j61e4lbwmdq.png)
Substituting the value of z from equation (iv) in equations (i) and (ii), we have
![2x+y-(3x-5)=-3\\\\\Rightarrow -x+y+5=-3\\\\\Rightarrow x-y=8~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(v)](https://img.qammunity.org/2020/formulas/mathematics/high-school/fqub6n0m230t3671oym31mkeff577ivfss.png)
and
![5x-2y+2(3x-5)=24\\\\\Rightarrow 11x-2y=34~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~(vi)](https://img.qammunity.org/2020/formulas/mathematics/high-school/689cqopfy1wk17gv74u99xuxq7j8n49fmj.png)
(v) × 2 - (vi) gives us
![2(x-y)-(11x-2y)=16-34\\\\\Rightarrow -9x=-18\\\\\Rightarrow x=2.](https://img.qammunity.org/2020/formulas/mathematics/high-school/2wt2r2t77ut5kp9xbzxf5ym7l6z9mwvk6q.png)
So, from equation (v), we get
![2-y=8\\\\\Rightarrow y=2-8\\\\\Rightarrow y=-6.](https://img.qammunity.org/2020/formulas/mathematics/high-school/7adfwb5ukuan2n7ouojo7sn06s4t9p2e2v.png)
From (iv), we get
![3* 2-5=z\\\\\Rightarrow z=1.](https://img.qammunity.org/2020/formulas/mathematics/high-school/exb3h57q67gk06jf65t8d58733mm0kubip.png)
Thus, the required solution is
(x, y, z) = (2, -6, 1).
Option (D) is CORRECT.