Answer:
a) 7.947 radians
b)
![\mathbf{(I)/(I_(max))=0.4535}](https://img.qammunity.org/2020/formulas/physics/college/a32yjybrlfggr46r5b12vv5hhz4piit3zm.png)
Step-by-step explanation:
y = Distance from central bright fringe = 2.5 mm
λ = Wavelength = 600 nm
L = Distance between screen and source = 2.8 m
d = Slit distance = 0.85 mm
![tan\theta =(y)/(L)\\\Rightarrow tan\theta =(2.5)/(2800)=0.000892\\\Rightarrow \theta=tan^(-1)0.000892=0.05115^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/znwn5jflaxmzivp4q7l07koyrwbldcwvjs.png)
![\Delta r= dsin\theta\Rightarrow \Delta r=dsin0.05115=7.589*10^(-7)](https://img.qammunity.org/2020/formulas/physics/college/r3kjpyiprp48xkol4o076g02wr0vq7yv1f.png)
a) Phase difference
![\phi=(2\pi)/(\lambda)\Delta r\\\Rightarrow \phi=(2\pi)/(600* 10^(-9))7.589*10^(-7)=7.947\ rad](https://img.qammunity.org/2020/formulas/physics/college/dywyvbetwqynw9namfq0rwkau9pjgurct0.png)
∴ Phase difference between the two interfering waves on a screen at a point 2.50 mm from the central bright fringe is 7.947 radians
b)
![(I)/(I_(max))=cos^2(\phi)/(2)\\\Rightarrow (I)/(I_(max))=cos^2(7.947)/(2)\\\Rightarrow \mathbf{(I)/(I_(max))=0.4535}](https://img.qammunity.org/2020/formulas/physics/college/j6gadn55kuakqm7k77u9b5knji76fpv208.png)
∴ Ratio of the intensity at this point to the intensity at the center of a bright fringe
![\mathbf{(I)/(I_(max))=0.4535}](https://img.qammunity.org/2020/formulas/physics/college/a32yjybrlfggr46r5b12vv5hhz4piit3zm.png)