Answer:
Brand 1 Brand 2 Difference
37734 35202 2532
45299 41635 3664
36240 35500 740
32100 31950 150
37210 38015 −805
48360 47800 560
38200 37810 390
33500 33215 285
Sum of difference = 2532+ 3664+740+150 −805+ 560 +390 +285 = 7516
Mean =
![d=(7516)/(8)](https://img.qammunity.org/2020/formulas/mathematics/college/ksakavwjg0w6sfhc6hzuq9cgokiq1ckbi0.png)
Mean =
![d=939.5](https://img.qammunity.org/2020/formulas/mathematics/college/3esz36c2htcl59knkjm36mhggkrwqsjxz2.png)
a) d= 939.5
![\text{Sample Standard deviation, s} = \sqrt{\frac{(x-\bar{x})^2}{n-1}}](https://img.qammunity.org/2020/formulas/mathematics/college/ch2f4ajxehl3814ub8769ms3l3as3ciba6.png)
![=\sqrt{((2532-939.5)^2+(3664-939.5)^2+(740-939.5)^2 ...+(285-939.5)^2)/(8-1)}](https://img.qammunity.org/2020/formulas/mathematics/college/owd23x0sfziyhrh63kdpniw4b6zags3twi.png)
=1441.21
b)SD= 1441.21
c)Calculate a 99% two-sided confidence interval on the difference in mean life.
confidence level =99%
significance level =α= 0.01
Degree of freedom = n-1 = 8-1 =7
So,
![t_{(\alpha)/(2)}=3.499](https://img.qammunity.org/2020/formulas/mathematics/college/u6ygwqqya8yuyhisb85cpqiinu1ld0pn04.png)
Formula for confidence interval
![= \left( \bar{X} \pm t_{(\alpha)/(2)} * (s)/(√(n)) \right)](https://img.qammunity.org/2020/formulas/mathematics/college/t0y60wwn4crtb3f0z5s03itanj5d524099.png)
Substitute the values
confidence interval
![= 939.5 \pm 3.499 * (1441.21)/(√(8)) \right)](https://img.qammunity.org/2020/formulas/mathematics/college/ua9k4iu66pc52txlogukr874ezctxpigpx.png)
confidence interval
to
![= 939.5 + 3.499 * (1441.21)/(√(8)) \right)](https://img.qammunity.org/2020/formulas/mathematics/college/km9anot0q8v80m6b69txy882ko3exih6nn.png)
Confidence interval
to
![2722.396](https://img.qammunity.org/2020/formulas/mathematics/college/hhgj1cwpbvlcty1hu4z7j3raemilduivjr.png)