Answer:
m = 73.88 kg
Step-by-step explanation:
total momentum = 0
P_1 +P_2 = 0
P_1 =P_2
WE KNOW THAT MOMENTUM IS GIVEN BY:
![P_1 =\frac{mv_1}{\sqrt{1 -(v_1^2)/(c^2)}} </p><p> [tex] =\frac{190*.280}{\sqrt{1 -(0.280^2)/(c^2)}}](https://img.qammunity.org/2020/formulas/physics/college/6lmkthxcdn3povugm3epcp1w177u619plq.png)
= 55.41c
second momentum with light velocity
![P_2 =- P_1](https://img.qammunity.org/2020/formulas/physics/college/dgv02az5hemh5huupcfpdgb99ucmbfsrk6.png)
![\frac{mv_2}{\sqrt{1 -(v_2^2)/(c^2)}} = 55.41c](https://img.qammunity.org/2020/formulas/physics/college/1mcck0wy57cyhtlyocvawpn22wzdgvei7h.png)
![mv_2 =5541c *\sqrt{1 -(v_2^2)/(c^2)](https://img.qammunity.org/2020/formulas/physics/college/m6zhu1n0j2n3u07sqevncop8hmgion4r1e.png)
![m *0.600c = 55.41c *\sqrt{1 -(0.600^2)/(c^2)](https://img.qammunity.org/2020/formulas/physics/college/x23v8onalzu8zajly1bndhxs2kxulh3pv2.png)
solving for m we get
m = - 73.88 kg
-ve show that second mass moves in opposite direction to first mass.