48.4k views
4 votes
Find the intervals of convergence of f(x), f '(x), f ''(x), and f(x) dx. (Enter your answer using interval notation. Be sure to check for convergence at the endpoints of the interval.) f(x) = ∞ (−1)n + 1(x − 4)x = 1 (a) f(x)

User Shannen
by
5.1k points

1 Answer

5 votes

I'm guessing you're given


f(x)=\displaystyle\sum_(n=1)^\infty((-1)^n+1)(x-4)^n

Note that for odd
n, the corresponding term in the series is 0, so only the even terms matter. Let
n=2k, for which
(-1)^(2k)+1=1+1=2. Then


f(x)=\displaystyle2\sum_(k=1)^\infty(x-4)^(2k)

Differentiating/integrating the power series gives


f'(x)=\displaystyle4\sum_(k=1)^\infty k(x-4)^(2k-1)


f''(x)=\displaystyle4\sum_(k=1)^\infty k(2k-1)(x-4)^(2k-2)


\displaystyle\int f(x)\,\mathrm dx=2\sum_(k=1)^\infty\frac{(x-4)}^(2k+1)}{2k+1}+C

By the ratio test, ...

a. ...
f(x) converges for


\displaystyle\lim_(k\to\infty)\left|(2(x-4)^(2(k+1)))/(2(x-4)^(2k))\right|=|x-4|^2\lim_(k\to\infty)1=|x-4|^2<1


\implies\boxed{3<x<5}

b. ...
f'(x) converges for


\displaystyle\lim_(k\to\infty)\left|(4(k+1)(x-4)^(2(k+1)-1))/(4k(x-4)^(2k-1))\right|=|x-4|^2\lim_(k\to\infty)\frac{k+1}k=|x-4|^2<1


\implies\boxed{3<x<5}

c. ...
f''(x) converges for


\displaystyle\lim_(k\to\infty)\left|(4(k+1)(2(k+1)-1)(x-4)^(2(k+1)-2))/(4k(2k-1)(x-4)^(2k-2))\right|=|x-4|\lim_(k\to\infty)((k+1)(2k+1))/(k(2k-1))=|x-4|^2<1


\implies\boxed{3<x<5}

d. ...
\displaystyle\int f(x)\,\mathrm dx converges to


\displaystyle\lim_(k\to\infty)\left|\frac{2\frac{(x-4)}^(2(k+1)+1)}{2(k+1)+1}}{2\frac{(x-4)}^(2k+1)}{2k+1}}\right|=|x-4|\lim_(k\to\infty)(2k+3)/(2k+1)=|x-4|<1


\implies\boxed{3<x<5}

User Svenkapudija
by
5.4k points