Answer:
6.3445×10⁻¹⁶ m
Step-by-step explanation:
E = Accelerating voltage = 2.47×10³ V
m = Mass of electron
Distance electron travels = 33.5 cm = 0.335 cm
![E=(mv^2)/(2)\\\Rightarrow v=\sqrt{(2E)/(m)}\\\Rightarrow v=\sqrt{(2* 2470* 1.6* 10^(-19))/(9.11* 10^(-31))}\\\Rightarrow v=29455356.08671\ m/s](https://img.qammunity.org/2020/formulas/physics/high-school/xjrmxjjxq5hwxgsrjd810wf4ccpg5ygiab.png)
Deflection by Earth's Gravity
![\Delta =\frac {gt^2}{2}](https://img.qammunity.org/2020/formulas/physics/high-school/njo60kykozgjehdz7vee0zgik28s1k209k.png)
Now, Time = Distance/Velocity
![\Delta =\frac {g(s^2)/(v^2)}{2}\\\Rightarrow \Delta =(9.81(0.335^2)/(29455356.08671^2))/(2)\\\Rightarrow \Delta =6.3445* 10^(-16)\ m](https://img.qammunity.org/2020/formulas/physics/high-school/jufvjqvwl8vp2inucrf45ygdbmro4pf0sp.png)
∴ Magnitude of the deflection on the screen caused by the Earth's gravitational field is 6.3445×10⁻¹⁶ m