Answer:
The size of the colony after 4 days is 8351.15.
8 days long there are 70,000 mosquitoes.
Explanation:
Given : The population of a colony of mosquitoes obeys the law of uninhibited growth. If there are 1000 mosquitoes initially and there are 1700 after 1 day.
To find : What is the size of the colony after 4 days and How long is it until there are 70,000 mosquitoes?
Solution :
Let the uninhibited growth is defined by a function,
![A=A_0e^(kt)](https://img.qammunity.org/2020/formulas/mathematics/college/toujo9yds49rmyjrtm208qnp67j2loekzo.png)
Where,
is the initial amount
e is the Euler's constant
k is the amount of increase
t=1 day is the time
A=1700 is the amount
Substitute all the values in the formula,
![1700=1000e^(k(1))](https://img.qammunity.org/2020/formulas/mathematics/college/y6kr6rfil0kzny4euf0mql45uuwmmu5upo.png)
![(1700)/(1000)=e^(k(1))](https://img.qammunity.org/2020/formulas/mathematics/college/ovh2alinnhg6mv2mk5f8an9amawkq4mzzz.png)
![1.7=e^(k)](https://img.qammunity.org/2020/formulas/mathematics/college/cpiwffwwpl5ulk4f0ibfjoeusmojp6ueaw.png)
Taking natural log both side,
![\ln(1.7)=\ln(e^(k))](https://img.qammunity.org/2020/formulas/mathematics/college/k55nrpgu06gamz5fg87rtkh48ociz51s2i.png)
![0.5306=k](https://img.qammunity.org/2020/formulas/mathematics/college/98ggfyai11at5t24n10srj5weqgqjhiljr.png)
Now, The size of the colony after 4 days is
![A=1000e^((0.5306)(4))](https://img.qammunity.org/2020/formulas/mathematics/college/3u4j3g30klknilaqx394si7qnjy7qaipiq.png)
![A=1000e^(2.1224)](https://img.qammunity.org/2020/formulas/mathematics/college/kq1iwt9ozscmfyy55c7nfn9fo2iys7h5q4.png)
![A=1000* 8.35115](https://img.qammunity.org/2020/formulas/mathematics/college/539qf1386ecg7odftfcwaw0aobu6j66u1c.png)
![A=8351.15](https://img.qammunity.org/2020/formulas/mathematics/college/bal8qvlnbubsm1urm966g58i7b351lriq5.png)
Therefore, The size of the colony after 4 days is 8351.15.
When there are 70,000 mosquitoes the time is
![70000=1000e^((0.5306)(t))](https://img.qammunity.org/2020/formulas/mathematics/college/hi5pdfhfwh09yjcki20r51669eci7ll39u.png)
![(70000)/(1000)=e^((0.5306)(t))](https://img.qammunity.org/2020/formulas/mathematics/college/irc72bc1cseh55dythiq8u6ksaikg79oh1.png)
![70=e^((0.5306)(t))](https://img.qammunity.org/2020/formulas/mathematics/college/dq3eurnv29zg53ijlzlgmbo5p9aw09qggd.png)
Taking ln both side,
![\ln(70)=\ln(e^(0.5306t))](https://img.qammunity.org/2020/formulas/mathematics/college/k9e0l8a0c0d3x7leoodi6r8blufb76mnna.png)
![4.248=0.5306t](https://img.qammunity.org/2020/formulas/mathematics/college/u6ez827l7cvqv5l5x4wf3e9x4dz71n7py0.png)
![t=(4.248)/(0.5306)](https://img.qammunity.org/2020/formulas/mathematics/college/vzbuvquybitjl1l8guvzlb3gijtr4e7hpf.png)
![t=8](https://img.qammunity.org/2020/formulas/mathematics/high-school/4o06qic19z44q3f8zvu7pvo1tj9iun7opo.png)
Therefore, 8 days long there are 70,000 mosquitoes.