Answer:
![(57.41,\ 62.19)](https://img.qammunity.org/2020/formulas/mathematics/college/rr2eloadp5tp56ahc66hjvl1o5e329t4mt.png)
Explanation:
Given : Sample size :
![n=40](https://img.qammunity.org/2020/formulas/mathematics/high-school/j76e4onwze7c8aph0scscgs66zfomz438l.png)
Sample mean :
![\overline{x}=59.8\text{ seconds}](https://img.qammunity.org/2020/formulas/mathematics/college/irpfrgoczd5660ong4v24ia1ib9w87y14l.png)
Standard deviation :
![\sigma =9.2\text{ seconds}](https://img.qammunity.org/2020/formulas/mathematics/college/louy9dj64j9af4etsqugrglyb8l08xf7b7.png)
Significance level :
![\alpha=1-0.9=0.1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/yrc0cvmnpnsycxb4bcp6nuzwdsihyzsy6o.png)
Critical value :
![z_(\alpha/2)=1.645](https://img.qammunity.org/2020/formulas/mathematics/middle-school/ppfu95k3932jlveab2gz0na5xhe4c849zz.png)
Formula to find the confidence interval for population mean :-
![\overline{x}\pm z_(\alpha/2)(\sigma)/(√(n))\\\\=59.8\pm(1.645)(9.2)/(√(40))\\\\\approx59.8\pm2.39\\\\=(59.8-2.39,\ 59.8+2.39)\\\\=(57.41,\ 62.19)](https://img.qammunity.org/2020/formulas/mathematics/college/b0dr0dfniflrciekvzo5q60yki3bbumy34.png)
Hence, a 90% confidence interval estimate of the population mean of all students =
![(57.41,\ 62.19)](https://img.qammunity.org/2020/formulas/mathematics/college/rr2eloadp5tp56ahc66hjvl1o5e329t4mt.png)