Answer:
398259
Explanation:
Let from the given positive integers, x be the smallest integers,
Also, numbers are consecutive,
So, the second integer = x + 1,
Third integer = x + 2,
According to the question,
![x^2+(x+1)^2+(x+2)^2=7805](https://img.qammunity.org/2020/formulas/mathematics/high-school/73z6dkkxynpa255soz6pwll8avahq1dy40.png)
![x^2+x^2+2x+1+x^2+4x+4=7805](https://img.qammunity.org/2020/formulas/mathematics/high-school/cavcg66gnohcy15n1obl7l8e7hkintlary.png)
![3x^2+6x+5=7805](https://img.qammunity.org/2020/formulas/mathematics/high-school/7ju02dfgj5t926ei37mvv3aut9k4hj82ou.png)
![3x^2+6x+5-7805=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/6y8o8ofy2w5g3brilwjecmquh2x3qendvs.png)
![3x^2+6x-7800=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/2rsy10ilg6y0z6sda5sf7x08ejozhnc1t6.png)
![x^2+2x-2600](https://img.qammunity.org/2020/formulas/mathematics/high-school/rclak8ei9ii2sny5rdkz6dnajpriwniidj.png)
By middle term splitting,
![x^2+(52-50)x-2600=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/60wxnfa83i6wcc54wewkta2hzauj4nkla8.png)
![x^2+52x-50x-2600=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/r89gmmkbd3xyfqrep4c64bvne89ky834tp.png)
![x(x+52)-50(x+52)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/jq2wxjyu68ywa77k15s66nr1hbyj8s6d95.png)
![(x-50)(x+52)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/ib8paq8jlt8qgtw3izmq3296m9xzdhc494.png)
By zero product property,
x-50 = 0 or x + 52 =0
⇒ x = 50 or x = -52 ( not possible )
Hence, numbers are 50, 51, 52,
∵ (50)³ + (51)³ + (52)³ = 125000 + 132651 + 140608 = 398259