104k views
3 votes
A stream of warm air with a dry-bulb temperature of 36°C and a wet-bulb temperature of 30°C is mixed adiabatically with a stream of saturated cool air at 12°C. The dry air mass flow rates of the warm and cool airstreams are 8 and 10 kg/s, respectively. Assuming a total pressure of 1 atm, determine (a) the temperature, (b) the specific humidity, and (c) the relative humidity of the mixture.

User Syfer
by
6.2k points

1 Answer

4 votes

Answer:

Step-by-step explanation:

Given


T_1\left ( DBT\right )=36^(\circ)C


WBT=30^(\circ)C


m_1=8 kg/s


m_2=10 kg/s

Now total mass
m_3=sum of m_1+m_2


m_3=8+10=18 kg/sec

Now from Steam table at DBT=
36^(\circ)C & WBT=30^(\circ)C


\omega _1=0.025kg\kg of dry air

for saturated cool air at
12^(\circ)C

Humidity ratio
\omega _2=0.0085 kg\kg of dry air

Now


m_1\omega _1+m_2\omega _2=m_3\omega _3


8\cdot 0.025+10\cdot 0.0085=18\cdot \omega _3


\omega _3=0.01585kg/kg of dry air

Now


m_1h_1+m_2h_2=m_3h_3


m_1C_pT_1+m_2C_pT_2=m_3C_pT_3


m_1T_1+m_2T_2=m_3T_3


8\cdot 36+10\cdot 12=18\cdot T_3


T_3=22.67^(\circ)C

From Psychometric chart


at t=22.67^(\circ)C & \omega _3=0.01585 kg/kg of dry air

relative humidity ratio
\phi =0.89 or 89\%

User George Clingerman
by
5.8k points