Answer with explanation:
Mean of the sample(m) = $ 5474
Standard deviation of the sample (S)=764
Number of observation(n)=36
![Z_{90 \text{Percent}}=Z_(0.09)=0.5359](https://img.qammunity.org/2020/formulas/mathematics/college/dnth0x07wwfj5isoj1mv1uq9deize1p3u2.png)
![z_(score)=(\Bar x-\mu)/((S)/(√(n)))\\\\0.5359=(5474- \mu)/((764)/(√(36)))\\\\0.5359=(5474- \mu)/((764)/(6))\\\\764 * 0.5359=6 * (5474- \mu)\\\\409.4276=32844-6 \mu\\\\6 \mu=32844 -409.4276\\\\ 6 \mu=32434.5724\\\\ \mu=(32434.5724)/(6)\\\\ \mu=5405.76](https://img.qammunity.org/2020/formulas/mathematics/college/a6tp0ofb5qu12zi1170ev0c6nnmqg0n8m3.png)
So, Mean Monthly Expenses of Population =$ 5405.76, which is 90% upper confidence bound for the company's mean monthly expenses.