Answer:
The work done in stretching the spring is 0.875 J.
Step-by-step explanation:
Given that,
Force = 140 N
Natural length = 60-40 = 20 cm
Stretch length of the spring = 65-60 = 5 cm
We need to calculate the spring constant
Using formula of Hooke's law
![F= kx](https://img.qammunity.org/2020/formulas/physics/college/ao8v5wq0hmsa7wej2m96sczqqdqhd5pzm9.png)
![140=k*20*10^(-2)](https://img.qammunity.org/2020/formulas/physics/college/ea4s2vpojixhu9qg4yf8vem1midrd5rye5.png)
![k=(140)/(20*10^(-2))](https://img.qammunity.org/2020/formulas/physics/college/77dx4hx89t2532qmtu8dbuic7jop7okj4t.png)
![k=700](https://img.qammunity.org/2020/formulas/physics/college/ac5ig9dqstue5n93lq0bbzf299c54u6yux.png)
We need to calculate the work done
![W=\int_(a)^(b){kx}dx](https://img.qammunity.org/2020/formulas/physics/college/mly6t118ob7mm45gb291ytsmopyhhcocyr.png)
![=\int_(0)^(0.05){700x}dx](https://img.qammunity.org/2020/formulas/physics/college/l4bgqo9dicppihs1vmrg47im22t048xbvw.png)
On integration
![W=700*((x^2)/(2))_(0)^(0.05)](https://img.qammunity.org/2020/formulas/physics/college/oy115wnou62kgd5q6j2k8tz8ogvyrwky4b.png)
![W=700*(((0.05)^2)/(2)-0)](https://img.qammunity.org/2020/formulas/physics/college/z0uyxp59kdjn8ujpjv11bv8aez6cufsgx2.png)
![W=0.875\ J](https://img.qammunity.org/2020/formulas/physics/college/wgjkbaihokp4lkml5pb3ckoj9r7ya947sy.png)
Hence, The work done in stretching the spring is 0.875 J.