Answer:
The angle between the red and blue light inside the glass is 1.9°.
Step-by-step explanation:
Given that,
Refractive index
For blue = 1.64
For red = 1.54
Incident angle = 48°
We need to calculate the angle between the red and blue light inside the glass
Using Snell's law
![(\sin_(i))/(\sin_(r))=n](https://img.qammunity.org/2020/formulas/physics/college/hh47m4g2nkavdsdhungdxpeji3u8v9uzpu.png)
For blue ray,
![\frac{\sin_(i)}{\sin_{r_(b)}}=n_(b)](https://img.qammunity.org/2020/formulas/physics/college/nzaahurh1k5c4s39l1zgogb5wz5mk4y7px.png)
![r_(b)=\sin^(-1)(\sin48^(\circ))/(n_(b))](https://img.qammunity.org/2020/formulas/physics/college/ztezzn4hxhq75h8rzmo55i32hi8eo22zlz.png)
![r_(b)=\sin^(-1)(\sin48^(\circ))/(1.64)](https://img.qammunity.org/2020/formulas/physics/college/cnca8j9258v3dehfab495rxf4xonj6udht.png)
![r_(b)=26.95^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/jor86nksi8dm5gdp6fm55pyv1ucfq2vaa0.png)
For red ray,
![\frac{\sin_(i)}{\sin_{r_(r)}}=n_(r)](https://img.qammunity.org/2020/formulas/physics/college/veayt1kvp9noqn3crk7n2r56su0fjjynfm.png)
![r_(r)=\sin^(-1)(\sin48^(\circ))/(n_(r))](https://img.qammunity.org/2020/formulas/physics/college/vc3btm21uh4ageg3wd2dqndghdgutkuuq9.png)
![r_(r)=\sin^(-1)(\sin48^(\circ))/(1.54)](https://img.qammunity.org/2020/formulas/physics/college/zahm0rlm8kr6b6l14ry7vbm3k01vek7upw.png)
![r_(r)=28.85^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/1rf0uap59aps8fr8839hw4rlgk2s8brcah.png)
We need to calculate the angle between the red and blue
![r_(rb)=r_(r)-r_(b)](https://img.qammunity.org/2020/formulas/physics/college/venz8fynnj8h4a7fk3nivfvud3co63ex41.png)
Put the value into the formula
![r_(rb)=28.85-26.95](https://img.qammunity.org/2020/formulas/physics/college/3p0nv7uenwluyy970mp5vypfouervwrxdp.png)
![r_(rb)=1.9^(\circ)](https://img.qammunity.org/2020/formulas/physics/college/ftq1rx8b7zyyrx80zqvc5gwndggqs3ss6n.png)
Hence, The angle between the red and blue light inside the glass is 1.9°.