Answer:
.
Explanation:
So we are given the equations are equal for
.
If the functions are equal for those values then their difference is zero for those values:
![f-g=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/2qw5b50c82aqn4k1o3dy27j3j2u5wfdrmw.png)
![(x^2- 2x+8)-(-x^2 +18x +4)=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/b8oa8wrc73iq09suj21qf7apxemi64c8v7.png)
Combine like terms; keep in mind we are subtracting over the parenthesis:
![2x^2-20x+4=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/z1j9ww5f5hy62szh5upp1s291jao9z5ed1.png)
Since all terms have a common factor of 2, then divide both sides by 2:
![x^2-10x+2=0](https://img.qammunity.org/2020/formulas/mathematics/high-school/owu8p5hn7y0jm9ndfejvs24rrphlrqsrvg.png)
When compared to
we should see:
![a=1](https://img.qammunity.org/2020/formulas/mathematics/middle-school/krkbqffkhyhi4myj6mrpvfi4x1hu9srce5.png)
![b=-10](https://img.qammunity.org/2020/formulas/mathematics/middle-school/g4frxkclb0o7hxtephswct4gzuchtnm51l.png)
![c=2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/shu08rksbckaw5h385851ylm4atiaqchvp.png)
Now use quadratic formula.
![x=(-b \pm √(b^2-4ac))/(2a)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/hgars81yntwdhytaoyvvvlu2ao3yrckt4d.png)
Plug in the values we found:
![x=(10 \pm √((-10)^2-4(1)(2)))/(2(1))](https://img.qammunity.org/2020/formulas/mathematics/high-school/a4ct72zft6v2na67mspx0o1d5ihwl57jyb.png)
Let's simplify:
![x=(10 \pm √(100-8))/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/55y7lzpcs5eth51x6hai54qcxixu57sx15.png)
![x=(10 \pm √(92))/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/mwzfxxfq514d5w4677qm6kgjo2spfcvksa.png)
92 isn't a perfect square but contains a factor that is; 92=4(23):
![x=(10 \pm √(4) √(23))/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/b10cvhqvzfd170ll7ooakzma4ykdhxrihd.png)
![x=(10 \pm 2√(23))/(2)](https://img.qammunity.org/2020/formulas/mathematics/high-school/5wk8i4du91yz4sdfaj041t4ox6oiry2riu.png)
Divide top and bottom by since all three terms have a common factor 2:
![x=(10 \pm 2√(23))/(1)](https://img.qammunity.org/2020/formulas/mathematics/high-school/i52zp491w81v1oh8yebk3nea6bt30wx94k.png)
![x=5 \pm √(23)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7glr2khlk7glb5jpcziovql7rh53i570b7.png)
So f and g are equal for:
![x=5 \pm √(23)](https://img.qammunity.org/2020/formulas/mathematics/high-school/7glr2khlk7glb5jpcziovql7rh53i570b7.png)
When compared to
we see that
.