Answer:
Mean = 3.4
Variance = 1.088
Standard deviation = 1.0431
Explanation:
![P=0.68\\ \\N=5](https://img.qammunity.org/2020/formulas/mathematics/college/q6i5u4m7bn2ss8gks83odqrz3d58cvh5ip.png)
The mean of a binomial distribution with parameters N (the number of trials) and p (the probability of success for each trial) is
![m=N\cdot p](https://img.qammunity.org/2020/formulas/mathematics/college/up3r5ra796hq8y9qt7hkujaiwnv88vlxz6.png)
Thus,
![m=5\cdot 0.68=3.4](https://img.qammunity.org/2020/formulas/mathematics/college/ym91zi50ob973pdl6mod69cp3w2i9huybl.png)
The variance of the binomial distribution is
, where
is the variance of the binomial distribution, so
![s^2=5\cdot 0.68\cdot (1-0.68)=3.4\cdot 0.32=1.088](https://img.qammunity.org/2020/formulas/mathematics/college/b56za6ootczjyyjzss27svxyoug4xlhegn.png)
The standard deviation
is the square root of the variance
so
![s=√(1.088)\approx 1.0431](https://img.qammunity.org/2020/formulas/mathematics/college/xq1p26eic036s0rhsnoqs6b0t2cewmxi7n.png)