Answer: The amount of energy released in the process is 4.042 MeV.
Step-by-step explanation:
The chemical reaction for the fusion of deuterium nucleus follows the equation:
![_1^2\textrm{H}+_1^2\textrm{H}\rightarrow _1^3\textrm{H}+_1^1\textrm{H}](https://img.qammunity.org/2020/formulas/physics/college/534zbyodx378scnmjeyoxy1nnbpfjgq1zr.png)
Atomic mass of the nucleus also contains some mass of the electrons.
Mass of electron in
is
![0.511MeV/c^2](https://img.qammunity.org/2020/formulas/physics/college/dbwmhqqgn9u8jwd3350o490krjpf9ri9qd.png)
- Calculating the mass of deuterium nucleus:
![m(_1^2\textrm{H})=(2.014102u)* (931.494MeV/c^2.u)-\text{Mass of electron}](https://img.qammunity.org/2020/formulas/physics/college/61x140y0grw0w4e598h1dk07t9mupjb483.png)
So, initial mass of the reaction =
![2[(1876.124MeV/c^2)-(0.511MeV/c^2)]=3751.226MeV/c^2](https://img.qammunity.org/2020/formulas/physics/college/xlio1m16os712dkp4cl1p338fstvd1upbj.png)
- Calculating the mass of tritium nucleus:
![m(_1^3\textrm{H})=(3.106049u)* (931.494MeV/c^2.u)-\text{Mass of electron}](https://img.qammunity.org/2020/formulas/physics/college/rc5ver8qzi9s5fi4o72w7wddbhkwh2yzys.png)
![m(_1^3\textrm{H})=(3.106049u)* (931.494MeV/c^2.u)-(0.511MeV/c^2)=2803.921MeV/c^2](https://img.qammunity.org/2020/formulas/physics/college/daqp8z2tfletd8ne152ft1k4qw9cq7mio3.png)
So, final mass of the reaction =
![2803.921-[(1.007267u* 931.494MeV/c^2.u)]=3747.184](https://img.qammunity.org/2020/formulas/physics/college/5q2xundckkaozw34mqjpttzit5henyl7yc.png)
Difference between the masses of the nucleus:
![\Delta m=m_(initial)-m_(final)\\\\\Delta m=(3751.226-3747.184)MeV/c^2=4.042MeV/c^2](https://img.qammunity.org/2020/formulas/physics/college/inv42wfgwnlshy3dw19apil363dikgnr1p.png)
Energy released in the process is calculated by using Einstein's equation, which is:
![E=\Delta mc^2](https://img.qammunity.org/2020/formulas/physics/college/fxet57h17q24mn4j10aqqky8ljefwl2s6i.png)
Putting value of
in above equation, we get:
![E=(4.042MeV/c^2)* c^2\\\\E=4.042MeV](https://img.qammunity.org/2020/formulas/physics/college/ovmk96zw8vum7whrd7tnm0ytp6jgciim25.png)
Hence, the amount of energy released in the process is 4.042 MeV.