104k views
0 votes
Determine whether a figure with the given vertices is a rectangle using the Distance Formula.

A(4, –7), B(4, –2), C(0, –2), D(0, –7)
Question 14 options:

Yes; Opposite sides are congruent.

Yes; Opposite sides are congruent, and diagonals are congruent.

Yes; Opposite sides are parallel.

No; Opposite sides are congruent, but diagonals are not congruent.

User Skoczen
by
4.7k points

2 Answers

1 vote

Answer:

The correct option is 2.

Explanation:

Given information: A(4, –7), B(4, –2), C(0, –2), D(0, –7).

Distance formula:


D=√((x_2-x_1)^2+(y_2-y_1)^2)

Using distance formula we get

Length of sides are


AB=√(\left(4-4\right)^2+\left(-2-\left(-7\right)\right)^2)


AB=√((0)^2+(-2+7)^2)


AB=√(5^2)=5

Similarly,


BC=√(\left(0-4\right)^2+\left(-2-\left(-2\right)\right)^2)=4


CD=√(\left(0-0\right)^2+\left(-7-\left(-2\right)\right)^2)=5


AD=√(\left(0-4\right)^2+\left(-7-\left(-7\right)\right)^2)=4

Length of diagonals are


AC=√(\left(0-4\right)^2+\left(-2-\left(-7\right)\right)^2)=√(41)


BD=√(\left(0-4\right)^2+\left(-7-\left(-2\right)\right)^2)=√(41)

It figure ABCD,

1. AB and CD are opposite sides.

2. BC and AD are opposite sides.

3. AC and BD are diagonals.

From the above calculations it is clear that opposite sides are congruent, and diagonals are congruent. So, the figure ABCD is a rectangle.

Therefore the correct option is 2.

User Yash Nag
by
5.1k points
2 votes

Answer:

Yes; Opposite sides are congruent, and diagonals are congruent.

Explanation:

we have


A(4, -7), B(4, -2), C(0, -2), D(0, -7)

we know that

the formula to calculate the distance between two points is equal to


d=\sqrt{(y2-y1)^(2)+(x2-x1)^(2)}

step 1

Find the length of the sides

Find the distance AB

substitute the values


d=\sqrt{(-2+7)^(2)+(4-4)^(2)}


d=\sqrt{(5)^(2)+(0)^(2)}


AB=5\ units

Find the distance BC

substitute the values


d=\sqrt{(-2+2)^(2)+(0-4)^(2)}


d=\sqrt{(0)^(2)+(-4)^(2)}


BC=4\ units

Find the distance CD

substitute the values


d=\sqrt{(-7+2)^(2)+(0-0)^(2)}


d=\sqrt{(-5)^(2)+(0)^(2)}


CD=5\ units

Find the distance AD

substitute the values


d=\sqrt{(-7+7)^(2)+(0-4)^(2)}


d=\sqrt{(0)^(2)+(-4)^(2)}


AD=4\ units

Compare the length sides

AB=CD

BC=AD

therefore

Opposite sides are congruent

step 2

Find the length of the diagonals

Find the distance AC

substitute the values


d=\sqrt{(-2+7)^(2)+(0-4)^(2)}


d=\sqrt{(5)^(2)+(-4)^(2)}


AC=√(41)\ units

Find the distance BD

substitute the values


d=\sqrt{(-7+2)^(2)+(0-4)^(2)}


d=\sqrt{(-5)^(2)+(-4)^(2)}


BD=√(41)\ units

Compare the length of the diagonals

AC=BD

therefore

Diagonals are congruent

The figure is a rectangle, because Opposite sides are congruent, and diagonals are congruent

User Tiamat
by
5.3k points