Answer:
a. k=150N/m, b.W=0.75J,c. W=12J, d.W=9J
Step-by-step explanation:
a. The Hooke's Law states
, where
is the force,
the spring constant and
the displacement, Knowing the force and the displacement you can find
:
![F=kx](https://img.qammunity.org/2020/formulas/physics/high-school/ivnw6jqhdmurxa3c0z25q7hl9zxvo5d7qf.png)
![k=\frac{F}x=(30)/(0.2)=150N/m](https://img.qammunity.org/2020/formulas/physics/college/pusqa0685wsobqeknp6f02u0g4d2l3vw2k.png)
b. The work done by a force
that moves along a displacement
is:
![W=\int\limits^(x_2)_(x_1) {F(s)} \, ds](https://img.qammunity.org/2020/formulas/physics/college/qz7evmt6bfd83yuzss3y5xt30midsth8ez.png)
Then
(Hooke's Law)
![W=\int\limits^(x_2)_(x_1) {F(s)} \, ds=\int\limits^(x_2)_(x_1) {ks} \, ds=(1)/(2) ks^2|\limits^(x_2)_(x_1)=(1)/(2) k(x_2^2-x_1^2)](https://img.qammunity.org/2020/formulas/physics/college/miemdfw544hcgatqebdvvx2ijfaye0h7gj.png)
Work needed to go from
to
![W=(1)/(2) k(x_2^2-x_1^2)=(1)/(2) 150(0.1^2-0^2)=75(0.01)=0.75 J](https://img.qammunity.org/2020/formulas/physics/college/dm3q6usjh26sgz9k94a60qqb8kvbdvx7bo.png)
c. Work needed to go from
to
![W=(1)/(2) k(x_2^2-x_1^2)=(1)/(2) 150(0.4^2-0^2)=75(0.16)=12 J](https://img.qammunity.org/2020/formulas/physics/college/q79iix1syacbxpor0mdf3r7cph13uznw2r.png)
d. Work needed to go from
to
![W=(1)/(2) k(x_2^2-x_1^2)=(1)/(2) 150(0.4^2-0.2^2)=75(0.16-0.04)=75(0.12)=9 J](https://img.qammunity.org/2020/formulas/physics/college/mdqpatcj0z9tk6ikl5nf5hgf46nof96ea4.png)