It looks like the integral could be
![\displaystyle\int_0^4\underbrace{e^(2\sqrt t)\sin(2t)}_(f(t))\,\mathrm dt](https://img.qammunity.org/2020/formulas/mathematics/college/37iunpa32onwniujq5ivcds2z6ae3bbjhr.png)
to be approximated by the three listed rules with
.
Splitting up the interval of integration into 8 subintervals gives us the partition,
[0, 1/2], [1/2, 1], [1, 3/2], ..., [7/2, 4]
where the left and right endpoints, respectively, are given by the sequences
![\ell_i=\frac{i-1}2](https://img.qammunity.org/2020/formulas/mathematics/college/kpzj3bpgb4zs68zhnmtf1neqxttj4wo270.png)
![r_i=\frac i2](https://img.qammunity.org/2020/formulas/mathematics/college/nbsarf7y9hizcn7m71fcbo64vaqegpg15c.png)
where
. The midpoints of each subinterval are given by
![m_i=\frac{\ell_i+r_i}2=\frac{\frac{i-1}2+\frac i2}2=\frac{2i-1}4](https://img.qammunity.org/2020/formulas/mathematics/college/qb2tfainkkjple0vz1hwnqcy8r68lloqgu.png)
Each subinterval has length
![\Delta t_i=r_i-\ell_i=\frac i2-\frac{i-1}2=\frac12](https://img.qammunity.org/2020/formulas/mathematics/college/vqmctj4a01nz0f1kbrwrl8u8wtce3fhxvi.png)
![\displaystyle\sum_(i=1)^8\frac{f(\ell_i)+f(r_i)}2\Delta t_i\approx11.070970](https://img.qammunity.org/2020/formulas/mathematics/college/nlnzivs3qjrnpc4sn9lemow2fnukbmez3j.png)
![\displaystyle\sum_(i=1)^8f(m_i)\Delta t_i\approx10.767065](https://img.qammunity.org/2020/formulas/mathematics/college/7ozrr6ha8esml2ketvon24cyhccy0w6kr5.png)
First we interpolate
over each subinterval with its own quadratic polynomial, given by
![p_i(t)=f(\ell_i)((t-m_i)(t-r_i))/((\ell_i-m_i)(\ell_i-r_i))+f(m_i)((t-\ell_i)(t-r_i))/((m_i-\ell_i)(m_i-r_i))+f(r_i)((t-\ell_i)(t-m_i))/((r_i-\ell_i)(r_i-m_i))](https://img.qammunity.org/2020/formulas/mathematics/college/9pzslxu785hslmpzmubqdrwez3eoyheily.png)
The integral is then approximately equal to
![\displaystyle\sum_(i=1)^8\int_(\ell_i)^(r_i)p_i(t)\,\mathrm dt](https://img.qammunity.org/2020/formulas/mathematics/college/fmkgagxvnmv5i9bas5sue1em1mwufs1sup.png)
It turns out that
![\displaystyle\int_(\ell_i)^(r_i)p_i(t)\,\mathrm dt=\frac{r_i-\ell_i}6(f(\ell_i)+4f(m_i)+f(r_i))](https://img.qammunity.org/2020/formulas/mathematics/college/gzz8nlbarb9ri2yabg1f6c6ikrscmp0xue.png)
so the integral we want to approximate is about
![\displaystyle\sum_(i=1)^8\frac{r_i-\ell_i}6(f(\ell_i)+4f(m_i)+f(r_i))\approx10.868366](https://img.qammunity.org/2020/formulas/mathematics/college/o264z7f5lykkpioua31rzvw8p4gqxg1s8s.png)
Compare these results to the actual value of the integral, which is about 10.873071.