228k views
0 votes
-x=-y+2 and 3y+4=2x solve using matrices

User Roger Ray
by
8.9k points

1 Answer

3 votes


\begin{cases}-x=-y+2\\3y+4=2x\end{cases}\implies\begin{cases}x-y=-2\\2x-3y=4\end{cases}

In matrix form, this is


\begin{bmatrix}1&-1\\2&-3\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}-2\\4\end{bmatrix}

The coefficient matrix has determinant


\begin{vmatrix}1&-1\\2&-3\end{vmatrix}=-3+2=-1\\eq0

so it has an inverse, which is


\begin{bmatrix}1&-1\\2&-3\end{bmatrix}^(-1)=\begin{bmatrix}3&-1\\2&-1\end{bmatrix}

Multiply both sides by the inverse matrix:


\begin{bmatrix}3&-1\\2&-1\end{bmatrix}\begin{bmatrix}1&-1\\2&-3\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}3&-1\\2&-1\end{bmatrix}\begin{bmatrix}-2\\4\end{bmatrix}


\implies\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}-10\\-8\end{bmatrix}

so that
x=-10 and
y=-8.

User Shammoo
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories