171k views
0 votes
Write the equation of an ellipse with vertices at (7, 0) and (-7, 0) and co-vertices at (0, 1) and (0, -1).

User Redtama
by
7.8k points

1 Answer

3 votes

Answer:


((x)^(2))/(49)+((y)^(2))/(1)=1

Explanation:

In this problem we have a horizontal ellipse, because the major axis is the x-axis

The equation of a horizontal ellipse is equal to


((x-h)^(2))/(a^(2))+((y-k)^(2))/(b^(2)) =1

where

(h,k) is the center of the ellipse

a and b are the respective vertices distances from center

we have

vertices at (7, 0) and (-7, 0)

co-vertices at (0, 1) and (0, -1)

so

The center is the origin (0.0) (The center is the midpoint of the vertices)

a=7

b=1

substitute


((x-0)^(2))/(7^(2))+((y-0)^(2))/(1^(2))=1


((x)^(2))/(49)+((y)^(2))/(1)=1

User Dekajoo
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories