Answer:
(a) 31.75 mph
(b) 31.77 mph
Step-by-step explanation:
(a) For t = 10 min = 10 / 60 = 1 / 6 hour
According to the question,
dx /dt = 15 mph
dy / dt = 28 mph
After 10 minutes
x = 1/6 x 15 = 2.5 miles
y = 1/6 x 28 = 4.67 miles
![d = \sqrt{x^(2)+y^(2)}=\sqrt{2.5^(2)+4.67^(2)} = 5.3 miles](https://img.qammunity.org/2020/formulas/physics/college/xw60cu7vwjkqe52g76e7eets1dlsp94wsm.png)
According to diagram
![D^(2) = {x^(2)+y^(2)}](https://img.qammunity.org/2020/formulas/physics/college/omlati7yei9ekxkv53ch3x9rp785k42a9t.png)
Differentiate both sides with respect to t.
2D dD/dt = 2 x dx/dt + 2y dy/dt
D dD/dt = x dx/dt + y dy/dt
5.3 dD/dt = 2.5 (15) + 4.67 (28)
dD/dt = 31.75 miles/hour
(b) For t = 55 minutes = 55 / 60 hours
After 55 / 60 hours
x = 55 / 60 (15) = 13.75 miles
y = 55 / 60 (28) = 25.67 miles
![d = \sqrt{x^(2)+y^(2)}=\sqrt{13.75^(2)+25.67^(2)} = 29.12 miles](https://img.qammunity.org/2020/formulas/physics/college/j9elkjrvjakzy19tyhgichc3akhtnfo0st.png)
According to diagram
![D^(2) = {x^(2)+y^(2)}](https://img.qammunity.org/2020/formulas/physics/college/omlati7yei9ekxkv53ch3x9rp785k42a9t.png)
Differentiate both sides with respect to t.
2D dD/dt = 2 x dx/dt + 2y dy/dt
D dD/dt = x dx/dt + y dy/dt
29.12 dD/dt = 13.75 (15) + 25.67 (28)
dD/dt = 31.77 miles/hour