Answer: A. 0.0164
Explanation:
Given : The lengths of human pregnancies are normally distributed with a mean
![\mu=268\text{ days}](https://img.qammunity.org/2020/formulas/mathematics/college/79wzm2baw7b6cjwn1bsy9lvewjqg61hpzs.png)
Standard deviation :
![\sigma=15\text{ days}](https://img.qammunity.org/2020/formulas/mathematics/college/847n6dh6ip36l7bf4b34j2abqe5mffqbeq.png)
Let X be the random variable that represents the length of pregnancy of a randomly selected human .
z-score :
![z=(X-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2zes9uw2jt131irnna605jf296xozfrm84.png)
For X = 300
![z=(300-268)/(15)\approx2.13](https://img.qammunity.org/2020/formulas/mathematics/college/qp6wfclctxzv6szu1dvd4kipzzeh4m8jpv.png)
Now, the probability that a pregnancy last at least 300 days will be :-
![P(X\geq300)=P(z\geq 2.1333)=1-P(z<2.1333)\\\\=1- 0.9835513=0.0164487\approx0.0164](https://img.qammunity.org/2020/formulas/mathematics/college/l02xgx73q3t8j8zq9e3rk3u23mp0lipf9t.png)
Hence, the probability that a pregnancy last at least 300 days =0.0164