134k views
2 votes
g Use the Divergence Theorem to evaluat where F = D xz + x 2 , −2xy, x2 + z 2 E and S is the hemisphere z = p 4 − x 2 − y 2 together with the portion of the xy-plane beneath that hemisphere, oriented outward.

1 Answer

3 votes

I guess you're supposed to evaluate the integral,


\displaystyle\iint_S\vec F\cdot\mathrm d\vec S

where
\vec F(x,y,z)=\langle xz+x^2,-2xy,x^2+z^2\rangle and
S is the hemisphere
z=√(4-x^2-y^2).


\vec F has divergence


\mathrm{div}\vec F(x,y,z)=(z+2x)+(-2x)+(2z)=3z

By the divergence theorem,


\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\iiint_V\mathrm{div}\vec F\,\mathrm dV

where
V is the space with
S as its boundary.

Convert to spherical coordinates, taking


\begin{cases}x=\rho\cos\theta\sin\varphi\\y=\rho\sin\theta\sin\varphi\\z=\rho\cos\varphi\end{cases}\implies\mathrm dV=\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi

Then the integral is


\displaystyle\int_0^(\pi/2)\int_0^(2\pi)\int_0^2(3\rho\cos\varphi)\rho^2\sin\varphi\,\mathrm d\rho\,\mathrm d\theta\,\mathrm d\varphi


\displaystyle6\pi\int_0^(\pi/2)\int_0^2\rho^3\sin\varphi\cos\varphi\,\mathrm d\rho\,\mathrm d\varphi


\displaystyle3\pi\int_0^(\pi/2)\int_0^2\rho^3\sin2\varphi\,\mathrm d\rho\,\mathrm d\varphi


\displaystyle3\pi\left(\int_0^(\pi/2)\sin2\varphi\,\mathrm d\varphi\right)\left(\int_0^2\rho^3\,\mathrm d\rho\right)=\boxed{12\pi}

User Aswad
by
5.4k points