Answer: 2.396
Explanation:
Given : It is claimed that the national average for the price of gasoline in $2.66 per gallon.
i.e. Population mean :
![\mu= \$\ 2.66 \text{ per gallon}](https://img.qammunity.org/2020/formulas/mathematics/college/9jnaskqmc43in7hn1pm7evmx8wuy9b6ep7.png)
Sample size :
![n=25](https://img.qammunity.org/2020/formulas/mathematics/middle-school/7e99yn365ve3agghnhfdeuf75dbgefmza6.png)
Sample mean :
![\overline{x}=\$\ 2.89](https://img.qammunity.org/2020/formulas/mathematics/college/a5l094niua7chnodir4kqr36i93oyh27c5.png)
Standard deviation :
![\sigma= 0.48](https://img.qammunity.org/2020/formulas/mathematics/college/4ful9ie3ccwsozb99kbnnkofi0agi3k6t1.png)
We assume that the national average for the price of gasoline is normally distributed.
Since the sample size is small (< 30), then we need to calculate t-test statistic for the test .
![t=\frac{\overline{x}-\mu}{(\sigma)/(√(n))}](https://img.qammunity.org/2020/formulas/mathematics/college/m5tz3dq51p25pt0zyjyoxpev73yiiy3kdz.png)
![=(2.89-2.66)/((0.48)/(√(25)))=2.39583333\approx2.396](https://img.qammunity.org/2020/formulas/mathematics/college/zls2l7o7sd9jqiw486rwisli275xwc17ho.png)
Hence, the test statistic for this test = 2.396