166k views
3 votes
X-rays with an energy of 400 keV undergo Compton scattering with a target. If the scattered X-rays are detected at \theta = 30^{\circ}θ=30 ​∘ ​​ relative to the incident X-rays, what is the energy of the recoiling electron?

User JEquihua
by
8.1k points

2 Answers

5 votes

Answer:

The energy of recoiling electron=192.44 keV

Step-by-step explanation:

Energy of x-ray
E_o=400 keV

Web know that compton shift is


\Delta \lambda =(h)/(m_eC(1-cos\theta))


m_e is the mass of electron and C is the velocity of sound.

Given that θ=30°

Now by putting the values


\Delta \lambda =(6.63* 10^(-34))/(9.11* 10^(-31)* 3* 10^8(1-cos30))


\Delta \lambda =2.8* 10^(-3)nm


\Delta \lambda_o=(hc)/(E_o)

By putting the values


\Delta \lambda_o=(6.63* 10^(-34)3* 10^8)/(400* 1.602* 10^(-16))


\Delta \lambda_o=3.31times 10^(-3)nm


\lambda =\Delta \lambda +\lambda _o


\lambda=2.8* 10^(-3)+3.31* 10^(-3)nm


\lambda=6.11`* 10^(-3)nm

Energy
E=(hC)/(\lambda )

So
E=(6.63* 10^(-34)* 3* 10^8)/(6.11* 10^(-12))

E=207.55 keV

The energy of recoiling electron=400-207.55 keV

The energy of recoiling electron=192.44 keV

User Dmitry Erokhin
by
7.8k points
5 votes

Answer:

37.91594 keV

Step-by-step explanation:


E_i = Incident energy = 400 keV

θ = 30°

h = Planck's constant = 4.135×10⁻¹⁵ eV s = 6.626×10⁻³⁴ J s

Incident photon wavelength


\lambda_i=(hc)/(E_i)\\\Rightarrow \lambda_i=(4.135* 10^(-15)* 3* 10^8)/(400* 10^3)\\\Rightarrow \lambda_i=3.101* 10^(-12)\ m

Difference in wavelength


\Delta \lambda=(h)/(m_ec)(1-cos\theta)\\\Rightarrow \Delta \lambda=(6.626* 10^(-34))/(9.11* 10^(-31)* 3* 10^8)(1-cos30)\\\Rightarrow \Delta \lambda=3.248* 10^(-13)\ m


\lambda_f=\lambda_i+\Delta \lambda\\\Rightarrow \lambda_f=3.101* 10^(-12)+3.248* 10^(-13)\\\Rightarrow \lambda_f=3.426* 10^(-12)

Final photon wavelength


\lambda_f=(hc)/(\lambda_f)\\\Rightarrow E_f=(4.135* 10^(-15)* 3* 10^8)/(3.426* 10^(-12))\\\Rightarrow E_f=362084.06\ eV = 362.08406\ keV

Energy of the recoiling electron


\Delta E=E_i-E_f\\\Rightarrow \Delta E=400-362.08406=37.91594\ keV

Energy of the recoiling electron is 37.91594 keV

User Atin Singh
by
8.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.