166k views
3 votes
X-rays with an energy of 400 keV undergo Compton scattering with a target. If the scattered X-rays are detected at \theta = 30^{\circ}θ=30 ​∘ ​​ relative to the incident X-rays, what is the energy of the recoiling electron?

User JEquihua
by
5.3k points

2 Answers

5 votes

Answer:

The energy of recoiling electron=192.44 keV

Step-by-step explanation:

Energy of x-ray
E_o=400 keV

Web know that compton shift is


\Delta \lambda =(h)/(m_eC(1-cos\theta))


m_e is the mass of electron and C is the velocity of sound.

Given that θ=30°

Now by putting the values


\Delta \lambda =(6.63* 10^(-34))/(9.11* 10^(-31)* 3* 10^8(1-cos30))


\Delta \lambda =2.8* 10^(-3)nm


\Delta \lambda_o=(hc)/(E_o)

By putting the values


\Delta \lambda_o=(6.63* 10^(-34)3* 10^8)/(400* 1.602* 10^(-16))


\Delta \lambda_o=3.31times 10^(-3)nm


\lambda =\Delta \lambda +\lambda _o


\lambda=2.8* 10^(-3)+3.31* 10^(-3)nm


\lambda=6.11`* 10^(-3)nm

Energy
E=(hC)/(\lambda )

So
E=(6.63* 10^(-34)* 3* 10^8)/(6.11* 10^(-12))

E=207.55 keV

The energy of recoiling electron=400-207.55 keV

The energy of recoiling electron=192.44 keV

User Dmitry Erokhin
by
5.9k points
5 votes

Answer:

37.91594 keV

Step-by-step explanation:


E_i = Incident energy = 400 keV

θ = 30°

h = Planck's constant = 4.135×10⁻¹⁵ eV s = 6.626×10⁻³⁴ J s

Incident photon wavelength


\lambda_i=(hc)/(E_i)\\\Rightarrow \lambda_i=(4.135* 10^(-15)* 3* 10^8)/(400* 10^3)\\\Rightarrow \lambda_i=3.101* 10^(-12)\ m

Difference in wavelength


\Delta \lambda=(h)/(m_ec)(1-cos\theta)\\\Rightarrow \Delta \lambda=(6.626* 10^(-34))/(9.11* 10^(-31)* 3* 10^8)(1-cos30)\\\Rightarrow \Delta \lambda=3.248* 10^(-13)\ m


\lambda_f=\lambda_i+\Delta \lambda\\\Rightarrow \lambda_f=3.101* 10^(-12)+3.248* 10^(-13)\\\Rightarrow \lambda_f=3.426* 10^(-12)

Final photon wavelength


\lambda_f=(hc)/(\lambda_f)\\\Rightarrow E_f=(4.135* 10^(-15)* 3* 10^8)/(3.426* 10^(-12))\\\Rightarrow E_f=362084.06\ eV = 362.08406\ keV

Energy of the recoiling electron


\Delta E=E_i-E_f\\\Rightarrow \Delta E=400-362.08406=37.91594\ keV

Energy of the recoiling electron is 37.91594 keV

User Atin Singh
by
6.1k points