Answer:
![(0.0445,\ 0.0755)](https://img.qammunity.org/2020/formulas/mathematics/college/o5er7jn7he0oeq6olalt9kl6vroa3ac46o.png)
Explanation:
The confidence interval for the population proportion is given by :-
![p\pm z_(\alpha/2)\sqrt{(p(1-p))/(n)}](https://img.qammunity.org/2020/formulas/mathematics/college/p9m06chotidciej9xkrg7jriq6irct43pj.png)
Given : A Bernoulli random variable X has unknown success probability p.
Sample size :
![n=100](https://img.qammunity.org/2020/formulas/mathematics/middle-school/h2jo43cy2aklpzoh8mn3kyusak1y4wx7pz.png)
Unknown success probability :
![p=0.06](https://img.qammunity.org/2020/formulas/mathematics/college/2nxldz17oktob3rf5wr0hyy4onynhbdb3y.png)
Significance level :
![\alpha=1-0.99=0.01](https://img.qammunity.org/2020/formulas/mathematics/college/hw7rszmzf85gg8hr51vodzmidxo6k6eals.png)
Critical value :
![z_(\alpha/2)=2.576](https://img.qammunity.org/2020/formulas/mathematics/college/xu4qa8f21pkyf4fo2ns7p8b8ensbc4vsoc.png)
Now, the 99% confidence interval for true proportion will be :-
![0.06\pm(2.576)\sqrt{(0.06(0.06))/(100)}\\\\\approx0.06\pm(0.0155)\\\\=(0.06-0.0155,\ 0.06+0.0155)\\\\=(0.0445,\ 0.0755)](https://img.qammunity.org/2020/formulas/mathematics/college/gztt2mahey7rthyac7rjg97443gyk4hj7e.png)
Hence, the 99% confidence interval for true proportion=
![(0.0445,\ 0.0755)](https://img.qammunity.org/2020/formulas/mathematics/college/o5er7jn7he0oeq6olalt9kl6vroa3ac46o.png)