Answer:
Or
with
![\alpha_x=66\°](https://img.qammunity.org/2020/formulas/physics/middle-school/m5k2r4yf2108luw81zqzp8x38wyh0qxymi.png)
Step-by-step explanation:
We know that the initial speed is:
1350 m/s at a 25 degree angle
And the final position after 10.20 sec is:
23,500 m away in a 55 degree direction
In this problem we have:
Final position in x:
![23,500cos(55\°)=V_0x(t) + 0.5a_xt^2](https://img.qammunity.org/2020/formulas/physics/middle-school/68zin64dc7ctcmehk88gnv2tmm1t8xfnk4.png)
Where
is the initial velocity in x
So:
![23,500cos(55\°)=1350cos(25\°)(10.20) + 0.5a_x(10.20)^2](https://img.qammunity.org/2020/formulas/physics/middle-school/gr11t859gbsqk4885f2fyyqikprl2w1u4v.png)
We solve for
![a_x](https://img.qammunity.org/2020/formulas/physics/middle-school/kk958ulsmrm2t056136mnqf5uu289omirs.png)
![23,500cos(55\°)-1350cos(25\°)(10.20) = 0.5a_x(10.20)^2](https://img.qammunity.org/2020/formulas/physics/middle-school/6e5qq04pihg5k4nxq28tjlspoyzihmhb5l.png)
![a_x=(23,500cos(55\°)-1350cos(25\°)(10.20))/(0.5(10.20^2))](https://img.qammunity.org/2020/formulas/physics/middle-school/ddjvhxhhwr03ehh5fho1987aa7becypgw6.png)
![a_x=19.21\ m/s^2](https://img.qammunity.org/2020/formulas/physics/middle-school/fn8iaqtga8hfavldf2xzdw2z4gmtgrzgmg.png)
X component of velocity
![Vx = 1350cos(25\°) + a_x(t)](https://img.qammunity.org/2020/formulas/physics/middle-school/u97fu1w2omyci336rfh4yr1o632dak2x7l.png)
Where
is the acceleration in the direction x
And
![a_x=19.21\ m/s^2](https://img.qammunity.org/2020/formulas/physics/middle-school/fn8iaqtga8hfavldf2xzdw2z4gmtgrzgmg.png)
Therefore:
![Vx = 1350cos(25\°) + 19.21(10.20)](https://img.qammunity.org/2020/formulas/physics/middle-school/qdmws6v6bpc81i62l0lwotfevhese7ijfc.png)
![Vx = 1419.46\ m/s](https://img.qammunity.org/2020/formulas/physics/middle-school/49mvx18xm9zbi9eppdoue37xcjz5u4bbdb.png)
Final position in y:
![23,500sin(55\°)=V_0y(t) + 0.5a_yt^2](https://img.qammunity.org/2020/formulas/physics/middle-school/rwax67nd3sbzdq2jpnxg1spw77gscs1b6q.png)
Where
is the initial velocity in y
So:
![23,500sin(55\°)=1350sin(25\°)(10.20) + 0.5a_y(10.20)^2](https://img.qammunity.org/2020/formulas/physics/middle-school/km65g7pj8dy1l15g80vua7ntsl0heeyu89.png)
We solve for
![a_y](https://img.qammunity.org/2020/formulas/physics/middle-school/j33d7ngovuvh21zmazjgkgdidw9qak5rir.png)
![23,500sin(55\°)-1350sin(25\°)(10.20) = 0.5a_y(10.20)^2](https://img.qammunity.org/2020/formulas/physics/middle-school/cnx1n2rg2jy54x7pzfeqezvo7u9gc1dlq4.png)
![a_y=(23,500sin(55\°)-1350sin(25\°)(10.20))/(0.5(10.20^2))](https://img.qammunity.org/2020/formulas/physics/middle-school/numlu5ttio67ollogh66ly0nvilklo8dyy.png)
![a_y=258.18\ m/s^2](https://img.qammunity.org/2020/formulas/physics/middle-school/jv5az3mfi42sse4x4f24i6mtexqw7o9jrp.png)
Y component of velocity
![V_y = 1350sin(25\°) +a_y(t)](https://img.qammunity.org/2020/formulas/physics/middle-school/3nc2q7dbo0ldfp2jdlyhbb2bjposw9y0y4.png)
Where
is the acceleration in the direction y
And
![a_y=258.18\ m/s^2](https://img.qammunity.org/2020/formulas/physics/middle-school/jv5az3mfi42sse4x4f24i6mtexqw7o9jrp.png)
Therefore:
![Vy = 1350sin(25\°) + 258.18(10.20)](https://img.qammunity.org/2020/formulas/physics/middle-school/nbi1yumuheen8b198udkup2exvrwu73b6e.png)
![Vy = 3203.97\ m/s](https://img.qammunity.org/2020/formulas/physics/middle-school/6t6v7xfza28bfg0oy5jmj8wj5mfnbmc9a1.png)
Note then that the final velocity V is a two component vector
![V = Vx+Vy](https://img.qammunity.org/2020/formulas/physics/middle-school/jjml94ahvqr32bxff2k85o2w9b2fxe4s86.png)
![V = 1419.46\ \^x+3203.97\ \^y\ \ m/s](https://img.qammunity.org/2020/formulas/physics/middle-school/ntbvikkmgla8t7zth69v2ig6fovq2gs0vo.png)
The magnitude of the final speed is:
![|V| =√(V_x^2+V_y^2)\\\\|V|=√((1419.46)^2+(3203.97)^2)\\\\|V|=3504.32\ m/s](https://img.qammunity.org/2020/formulas/physics/middle-school/349vq56bytm2jxusl9br4nk097h28vo6of.png)
And the angle that forms with the x axis is:
![\alpha=cos^(-1)((V_x)/(|V|))\\\\\\\alpha =cos^(-1)((1419.46)/(3504.32))\\\\\alpha=66\°](https://img.qammunity.org/2020/formulas/physics/middle-school/2w9gp87owwgo6g5wo6zarz83ab0cjj85q9.png)