Answer: (a) (602.95,705.37)
(b) 33
Explanation:
(a) Given : Sample size :
![n=40](https://img.qammunity.org/2020/formulas/mathematics/high-school/j76e4onwze7c8aph0scscgs66zfomz438l.png)
Sample mean :
![\overline{x}=654.16](https://img.qammunity.org/2020/formulas/mathematics/high-school/i2r2lnygj07gjmpgz05zxf0x7wlstikgka.png)
Standard deviation :
![\sigma= 165.23](https://img.qammunity.org/2020/formulas/mathematics/high-school/xtfr2kicjgx2klc6t1bmpjprpdpxdzajdt.png)
Significance level :
![\alpha=1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/college/4d93854tdh8vyqqac8zw25nhdokllaz78c.png)
Critical value :
![z_(\alpha/2)=1.96](https://img.qammunity.org/2020/formulas/mathematics/high-school/fn1e1isyr7r4ubq2yxfnpgs4mo3eo8m7ik.png)
The confidence interval for population mean is given by :-
![\mu\ \pm z_(\alpha/2)(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/xb1udtolm7tvwevhcsuqlnj1l6bqj9etap.png)
![=654.16\pm(1.96)(165.23)/(√(40))\\\\\approx654.16\pm51.21\\\\=(654.16-51.21,\ 654.16+51.21)=(602.95,705.37)](https://img.qammunity.org/2020/formulas/mathematics/high-school/yr1rndbry2j5gjh7ohnqp3soh32y40j5ex.png)
Hence, the 95% (two-sided) confidence interval for true average
level in the population of all homes from which the sample was selected.
(b) Given : Standard deviation :
![s= 167\text{ ppm}](https://img.qammunity.org/2020/formulas/mathematics/high-school/hpzjd6eqhe1m6veul9v1dbe3yfqdypwuox.png)
Margin of error :
![E=\pm57\text{ ppm}](https://img.qammunity.org/2020/formulas/mathematics/high-school/3eua1wo0u4whg942s7jmyvou0nc0p6zxc3.png)
Significance level :
![\alpha=1-0.95=0.05](https://img.qammunity.org/2020/formulas/mathematics/college/4d93854tdh8vyqqac8zw25nhdokllaz78c.png)
Critical value :
![z_(\alpha/2)=1.96](https://img.qammunity.org/2020/formulas/mathematics/high-school/fn1e1isyr7r4ubq2yxfnpgs4mo3eo8m7ik.png)
The formula to calculate the sample size is given by :-
![n=((z_(\alpha/2)s)/(E))^2\\\\\Rightarrow\ n=(((1.96)(167))/(57))^2=32.9758025239\approx33](https://img.qammunity.org/2020/formulas/mathematics/high-school/hnr5pxe8evw6y74ua3sgnioyf48sd255zs.png)
Hence, the minimum required sample size would be 33.