Answer:
P = 981 N
Step-by-step explanation:
Given
Angle of the incline θ = 10°
Angle of the towing force φ =20°
Weight of the crate W = 3433.5 N
The coefficient of static friction µ = 0.5
Solution
Forces Acting along the ramp

Forces acting perpendicular to the ramp

Substituting the value of N we get
![\mu[Wcos10^(0)-Psin30^(o)] =Pcos30^(o)+Wsin10^(0)\\\\\mu Wcos10^(0)- \mu Psin30^(o) =Pcos30^(o)+Wsin10^(0)\\\\\mu Wcos10^(0)- Wsin10^(0)=Pcos30^(o)+\mu Psin30^(o) \\\\P=W(\mu cos10^(0)- sin10^(0))/(cos30^(o)+\mu sin30^(o)) \\\\P=3433.5(0.5 * cos10^(0)- sin10^(0))/(cos30^(o)+0.5 * sin30^(o))\\\\P=980.66\\\\ P = 981 N](https://img.qammunity.org/2020/formulas/physics/college/n31b3civot6fttfpde9ked2es2f1vblv0w.png)