166k views
0 votes
What’s the vertex form of F(x)=x^2+2x-3

User Csknk
by
7.3k points

1 Answer

4 votes

Answer:


\large\boxed{f(x)=(x+1)^2-4}

Explanation:


\text{The vertex form of a quadratic equation}\ f(x)=ax^2+bx+c:\\\\f(x)=a(x-h)^2+k\\\\(h,\ k)-\text{vertex}\\=====================================


\bold{METHOD\ 1:}\\\\\text{convert to the perfect square}\ (a+b)^2=a^2+2ab+b^2\qquad(*)\\\\f(x)=x^2+2x-3=\underbrace{x^2+2(x)(1)+1^2}_((*))-1^2-3\\\\f(x)=(x+1)^2-4\\==============================


\bold{METHOD\ 2:}\\\\\text{Use the formulas:}\ h=(-b)/(2a),\ k=f(k)\\\\f(x)=x^2+2x-3\to a=1,\ b=2,\ c=-3\\\\h=(-2)/(2(1))=(-2)/(2)=-1\\\\k=f(-1)=(-1)^2+2(-1)-3=1-2-3=-4\\\\f(x)=(x-(-1))^2-4=(x+1)^2-4

User Bigbug
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories