Answer:
magnitude=2085.99 kg
direction angle= 23.18°
Step-by-step explanation:
let the forces be x,y
x = 1670cos(90°+30°) i +1670sin(90°+30°) j,
y = 1250cos(-90°-60°) i +1250sin(-90°-60°) j
x = 1670cos(120°) i + 1670sin(120°) j,
y = 1250cos(-150°) i + 1250sin(-150°) j
resultant force = x+y
resultant force = 1670cos(120°) i +1670sin(120°) j + 1250cos(-150°) i +1250sin(-150°) j
taking i and j term together
resultant force = (1670cos(120°) +1250cos(-150°)) i +(1670sin(120°) +1250sin(-150°)) j
resultant force = -1917.53 i +821.26j

magnitude=2085.99 kg
direction angle=

direction angle= 23.18°