Answer:
![(2.8,\ 3.6)](https://img.qammunity.org/2020/formulas/mathematics/college/97nk2j2oyhf3a7oc9hdr15ze1pldaw4zng.png)
Explanation:
The confidence interval for population mean is given by :-
![\overline{x}\pm z_(\alpha/2)(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/physics/high-school/8ob9lxp74mdevwdfxubejzkzkpzvqay12m.png)
Given : Sample size : n= 51 ( >30 , that means its a large sample)
Sample mean :
![\overlien{x}=3.2\text{ grams}](https://img.qammunity.org/2020/formulas/mathematics/college/emt9oxrcm3n63purl93nsbg427njbs6d7f.png)
Standard deviation :
![\sigma=1.1\text{ grams}](https://img.qammunity.org/2020/formulas/mathematics/college/ymay1lb28nf9yikbrsjgmgqnz2ia3wzt5j.png)
Significance level :
![1-0.99=0.01](https://img.qammunity.org/2020/formulas/mathematics/college/kpxw6f03zdx7dbr2r2qrjnjm9sp9zgk2ai.png)
Critical value :
![z_(\alpha/2)=\pm2.576](https://img.qammunity.org/2020/formulas/mathematics/college/26el0g49efjw49v0nam9t8bia7cw1rq13b.png)
Now, the 99% confidence interval for the mean grams of sugar will be :-
![=3.2\pm(2.576)*(1.1)/(√(51))\\\\\approx3.2\pm0.40\\\\=(2.8,\ 3.6)](https://img.qammunity.org/2020/formulas/mathematics/college/3hv3nv7ho5z9hvudo8bmfom35ebpb3a35q.png)
Hence, the 99% confidence interval for the mean grams of sugar
=
![(2.8,\ 3.6)](https://img.qammunity.org/2020/formulas/mathematics/college/97nk2j2oyhf3a7oc9hdr15ze1pldaw4zng.png)