Answer:
Radius of cross section, r = 0.24 m
Step-by-step explanation:
It is given that,
Number of turns, N = 180
Change in magnetic field,
![(dB)/(dt)=3\ T/s](https://img.qammunity.org/2020/formulas/physics/college/y0bd93aw5h6k4ebxinraq6siwrw96asxma.png)
Current, I = 6 A
Resistance of the solenoid, R = 17 ohms
We need to find the radius of the solenoid (r). We know that emf is given by :
![E=N(d\phi)/(dt)](https://img.qammunity.org/2020/formulas/physics/college/vsbjljgssdws217s55u5iu6eqemgwjiccl.png)
![E=N(d(BA))/(dt)](https://img.qammunity.org/2020/formulas/physics/college/ol7aapsr2w2b74ckhq6mkhh1u4ajmjwgs4.png)
Since, E = IR
![IR=NA(dB)/(dt)](https://img.qammunity.org/2020/formulas/physics/college/8h1lwlmvmps3xjs6h8jjuvdclkxbsxz2mx.png)
![A=(IR)/(N.(dB)/(dt))](https://img.qammunity.org/2020/formulas/physics/college/mq8z7da30ncltp1f42xw2zn0lk98fky1o8.png)
![A=(6\ A* 17\ \Omega)/(180* 3\ T/s)](https://img.qammunity.org/2020/formulas/physics/college/cagspb26z6buwktbaf4gkaqibc3zjia5c8.png)
![A=0.188\ m^2](https://img.qammunity.org/2020/formulas/physics/college/k5tbj97cz73kwlzz3ukcmt55rpcu7crm22.png)
or
![A=0.19\ m^2](https://img.qammunity.org/2020/formulas/physics/college/q3b2a50g4q42icuv63lhp45a4vnripltri.png)
Area of circular cross section is,
![A=\pi r^2](https://img.qammunity.org/2020/formulas/mathematics/middle-school/j29wdsg40jbed167khn7fs44y2z9velxu7.png)
![r=\sqrt{(A)/(\pi)}](https://img.qammunity.org/2020/formulas/mathematics/middle-school/5sn700oe9mgtzv3nu5sp0ln6pmigq8vjnw.png)
![r=\sqrt{(0.19)/(\pi)}](https://img.qammunity.org/2020/formulas/physics/college/zh1xfok9jkulizq811jq1dawkrqjth153s.png)
r = 0.24 m
So, the radius of a tightly wound solenoid of circular cross-section is 0.24 meters. Hence, this is the required solution.