Answer:
The probability of choosing mathematics =P(M)=
![(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/e902xdvhskq5go8rzqwzc0u5ermj5vc0m5.png)
The probability that he chooses either art or French=1
Explanation:
We are given that a student must choose exactly two out of three elective subjects : art ,french and mathematics.
The probability of choosing art=
![(5)/(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vxddhg228csxjy2evrh0lqiufb2suv2tlh.png)
The probability of choosing french =
![(5)/(8)](https://img.qammunity.org/2020/formulas/mathematics/middle-school/vxddhg228csxjy2evrh0lqiufb2suv2tlh.png)
The probability of choosing French and art=
![(1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/high-school/iiq2xsk4vi9pqjukqb60xxgyxukyno498i.png)
Let A ,F and M denotes the students of art,french and mathematics.
![P(A)=P(A\cap M)+P(A\cap F)](https://img.qammunity.org/2020/formulas/mathematics/college/bbd5iiu4zqvzzkccb1g1yc4bkk5b749kec.png)
![P(A\cap F)+P(A\cap M)=(5)/(8)](https://img.qammunity.org/2020/formulas/mathematics/college/4upppas0e3s4eo8owaoimvsdyvrievnvm9.png)
![P(F\cap M)+P(F\cap A)=P(F)=(5)/(8)](https://img.qammunity.org/2020/formulas/mathematics/college/f4243vgma3myy8qu7xr50yimkwymizuunb.png)
Probability of choosing mathematics only=0
Probability of choosing French only =0
Probability of choosing art only =0
Probability of choosing all three subjects =0
![P(M)=P(M\cap A)+P(M\cap F)](https://img.qammunity.org/2020/formulas/mathematics/college/oo0o1pvdykv6zk63a23lmmgnipo4bdc7x0.png)
![P(A\cap F)=(1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/ml91hh6dlbajbifh1fcpwtkg720qhiex5h.png)
Substitute the value then we get
![P(A\cap M)=(5)/(8)-(1)/(4)==(3)/(8)](https://img.qammunity.org/2020/formulas/mathematics/college/hxiixnxxw1hwrbreqeuzhl7vk45a6siw6k.png)
![P(F\cap M)=(5)/(8)-(1)/(4)=(3)/(8)](https://img.qammunity.org/2020/formulas/mathematics/college/y2u62hrhdybboa5vqdie01oq0ilt0ausbc.png)
Therefore,
![P(M)=P(A\cap M)+P(F\cap M)=(3)/(8)+(3)/(8)=(6)/(8)=(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/c3btglsheawou5jovj78q9x9k2pyb4i6t4.png)
Hence, the probability of choosing mathematics =P(M)=
![(3)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/e902xdvhskq5go8rzqwzc0u5ermj5vc0m5.png)
![P(A\cup F)=P(A)+P(F)-P(A\cap F)](https://img.qammunity.org/2020/formulas/mathematics/college/nmfjrupmtyf3kswhgv81bpka5jzijbzrjw.png)
![P(A\cup F)=(5)/(8)+(5)/(8)-(1)/(4)](https://img.qammunity.org/2020/formulas/mathematics/college/93ppeijx1joilol4xmpwcnn0tjy355vly2.png)
![P(A\cup F)=(5+5-2)/(8)=1](https://img.qammunity.org/2020/formulas/mathematics/college/m2nmpdmrnuw9lcjwtplm96l2o3cdffbnve.png)
Hence, the probability that he chooses either art or French=1