x(t)=4cos(πt) -divide by 4
y(t)=3sin(πt) -divide by 3
x(t)/4 = cos(πt) -to the square
y(t)/3 = sin(πt) -to the square
x(t)²/16 = cos²(πt)
y(t)²/9 = sin²(πt)
Sum this:
x(t)²/16 + y(t)²/9 = cos²(πt)+sin²(πt)
x²/16 + y²/9 = 1.
a² is 16 and b² is 9 therefore a=4 and b=3.
Parametric equation of elipse is generally:
x(t) = a cos(f(t))
y(t) = b sin (f(t))