Answer:
7 rpm = 0.73 rad/s
Explanation:
R = Radius of merry-go-round = 1.8 m
= Moment of inertia of merry-go-round = 255 kg m²
= Moment of inertia of child
ω = 9 rev/min
m = Mass of child = 24 kg
From the conservation of angular momentum
![I\omega=I'\omega '\\\Rightarrow I\omega=(I_M+I_C)\omega'\\\Rightarrow \omega'= (I\omega)/((I_M+I_C))\\\Rightarrow \omega'=(I\omega)/((I_M+mR^2))\\\Rightarrow \omega'=(255* 9)/((255+24* 1.8^2))\\\Rightarrow \omega'=6.9\ rev/min](https://img.qammunity.org/2020/formulas/mathematics/high-school/bpcnu30qggz7waqef0m1x1227sk7d8cx7t.png)
∴ New angular speed of the merry-go-round is 7 rpm =
![7* (2\pi)/(60)=\mathbf{0.73\ rad/s}](https://img.qammunity.org/2020/formulas/mathematics/high-school/9kz2rvrgal6s2mkxaj7y13gtin89ttp20a.png)