Answer:
![(19.48,\ 21.32)](https://img.qammunity.org/2020/formulas/mathematics/college/s1wi00zuw66sk9jxtudf5k5qnt22jn1qxl.png)
Explanation:
The confidence interval for population mean is given by :-
![\mu\ \pm z_(\alpha/2)(\sigma)/(√(n))](https://img.qammunity.org/2020/formulas/mathematics/college/xb1udtolm7tvwevhcsuqlnj1l6bqj9etap.png)
Given : Sample size :
![n=50](https://img.qammunity.org/2020/formulas/mathematics/middle-school/nnexb9qbq36dimlsnj0s4k9my3yakd3pxe.png)
![\mu=20.4\text{ minutes}](https://img.qammunity.org/2020/formulas/mathematics/college/vmsz0onpfguegtm82lhrwvvgyd67ti8hy7.png)
![\sigma=2.1\text{ minutes}](https://img.qammunity.org/2020/formulas/mathematics/college/cx60c4jgnt630bmisfrwj7w6s2gyr5t5ao.png)
Significance level :
![1-0.99.8=0.002](https://img.qammunity.org/2020/formulas/mathematics/college/qr48wdmgy4r8r6cazrsfttm2b2jebkiom4.png)
Critical value :
![z_(\alpha/2)=3.090](https://img.qammunity.org/2020/formulas/mathematics/college/jg3yq364cun05ufa02bgboknfhfbgyajrm.png)
Now, the 99.8% confidence interval for the mean time taken for all students to fill out the form will be :-
![20.4\ \pm (3.09)(2.1)/(√(50))\\\\\approx20.4\pm0.92\\\\=(19.48,\ 21.32)](https://img.qammunity.org/2020/formulas/mathematics/college/95zje7z1j8i5prs7pbnmtm1baw245wxrb1.png)
Hence, a 99.8% confidence interval for the mean time taken for all students to fill out the form =
![(19.48,\ 21.32)](https://img.qammunity.org/2020/formulas/mathematics/college/s1wi00zuw66sk9jxtudf5k5qnt22jn1qxl.png)