Answer: C. 82.26%
Step-by-step explanation:
Given : The red blood cell counts of women are normally distributed with
![\mu=4.577\text{ million cells per microliter}](https://img.qammunity.org/2020/formulas/biology/college/s90pq91mdqlq5h3uwzrr04el80ib6ww2ii.png)
![\sigma=0.382\text{ million cells per microliter}](https://img.qammunity.org/2020/formulas/biology/college/akutzeexyxaqgrdvhgkt8nu1u3xb3axvrk.png)
Let X be the random variable that represents the red blood cell counts of randomly selected woman.
Z-score :
![z=(X-\mu)/(\sigma)](https://img.qammunity.org/2020/formulas/mathematics/high-school/2zes9uw2jt131irnna605jf296xozfrm84.png)
For X=4.2
![z=(4.2-4.577)/(0.382)\approx-0.99](https://img.qammunity.org/2020/formulas/biology/college/5xu66cxtp4ee3dxz9q354eoz9n84nesp6f.png)
For X=5.4
![z=(5.4-4.577)/(0.382)\approx2.1544](https://img.qammunity.org/2020/formulas/biology/college/srj4tgay5sb0xqwq06zitu5xs0capg9ghn.png)
Now, the probability that the women have red blood cell counts in the normal range from 4.2 to 5.4 million cells per microliter will be :-
![P(4.2<X<5.4)=P(-0.99<z<2.15)\\\\=P(z<2.1544)-P(z<-0.99)\\\\=0.9843955-0.1618458=0.8225497\approx0.8226=82.26\%](https://img.qammunity.org/2020/formulas/biology/college/zc6kqn6us4cwvudjs14fjrg51izc4ngmix.png)
Hence, 82.26% of women have red blood cell counts in the normal range from 4.2 to 5.4 million cells per microliter.