Answer:
(a) 3.0 μF
(b) 75.0 μF
Step-by-step explanation:
The equivalent capacitance when the capacitors are connected all in series is:
![(1)/(C_(T) ) =(1)/(C_(1) ) +(1)/(C_(2) ) +(1)/(C_(3) ) +(1)/(C_(4) ) +(1)/(C_(5) )](https://img.qammunity.org/2020/formulas/physics/college/y701a5r0iebp9vz03ain3nuisszxcsfl1r.png)
Where
is the equivalent capacitance,
,
,
,
and
are the capacitance of each capacitors. In this case, they all have 15.0 μF. So we can replace as:
![(1)/(C_(T) ) =(1)/(15.0) +(1)/(15.0) +(1)/(15.0) +(1)/(15.0) +(1)/(15.0)](https://img.qammunity.org/2020/formulas/physics/college/xmzbn8mzmv0wiu74jrzdalfr25tmpg7v67.png)
![(1)/(C_(T) ) =(5)/(15.0)](https://img.qammunity.org/2020/formulas/physics/college/j8wntkv5h54v41lbnfbk0blhdg1smskfm3.png)
The solve for
:
=3.0 μF
The equivalent capacitance when the capacitors are connected all in parallel is:
![C_(T)=C_(1)+C_(2)+C_(3)+C_(4)+C_(5)](https://img.qammunity.org/2020/formulas/physics/college/g8z54xt3jv8vyydc9ao8se9232af59gdio.png)
Replacing values we get:
=15.0 μF+15.0 μF+15.0 μF+15.0 μF+15.0 μF
=75.0 μF