201k views
3 votes
The snack shop makes 3 mixes of nuts in the following proportions.

mix I: 6 lbs peanuts, 2 lbs cashews, 2 lbs pecans.

Mix II: 5 lbs peanuts, 3 lbs cashews, 2 lbs pecans.

Mix III: 3 lbs peanuts, 4 lbs cashews, 3 lbs pecans.

they received an order for 25 of mix I, 18 of mix II, and 35 of mix III. write the matrices A & B for which AB gives the total number of lbs of each nut required to fill the order.

User Marlow
by
8.1k points

1 Answer

7 votes

Answer:


A=\begin{bmatrix}6 & 5 & 3\\ 2 & 3 & 4\\ 2 & 2 & 3\end{bmatrix}


B=\begin{bmatrix}25\\ 18\\ 35\end{bmatrix}

Explanation:

It is given that the snack shop makes 3 mixes of nuts in the following proportions.

Mix I: 6 lbs peanuts, 2 lbs cashews, 2 lbs pecans.

Mix II: 5 lbs peanuts, 3 lbs cashews, 2 lbs pecans.

Mix III: 3 lbs peanuts, 4 lbs cashews, 3 lbs pecans.

they received an order for 25 of mix I, 18 of mix II, and 35 of mix III.

We need to find the matrices A & B for which AB gives the total number of lbs of each nut required to fill the order.

Mix I Mix II Mix III

peanuts 6 5 3

cashews 2 3 4

pecans 2 2 2


A=\begin{bmatrix}6 & 5 & 3\\ 2 & 3 & 4\\ 2 & 2 & 3\end{bmatrix}


B=\begin{bmatrix}25\\ 18\\ 35\end{bmatrix}

The product of both matrices is


AB=\begin{bmatrix}6 & 5 & 3\\ 2 & 3 & 4\\ 2 & 2 & 3\end{bmatrix}\begin{bmatrix}25\\ 18\\ 35\end{bmatrix}


AB=\begin{bmatrix}6\cdot \:25+5\cdot \:18+3\cdot \:35\\ 2\cdot \:25+3\cdot \:18+4\cdot \:35\\ 2\cdot \:25+2\cdot \:18+3\cdot \:35\end{bmatrix}


AB=\begin{bmatrix}345\\ 244\\ 191\end{bmatrix}

Therefore matrix AB gives the total number of lbs of each nut required to fill the order.

User Xavier Priour
by
8.8k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.